Beyond induced-fit receptor-ligand interactions: structural changes that can significantly extend bond lifetimes.

نویسندگان

  • Lina M Nilsson
  • Wendy E Thomas
  • Evgeni V Sokurenko
  • Viola Vogel
چکیده

While the lifetime of conventional receptor-ligand interactions is shortened by tensile mechanical force, some recently discovered interactions, termed catch bonds, can be strengthened by force. Motivated by the search for the underpinning structural mechanisms, we here explore the structural dynamics of the binding site of the bacterial adhesive protein FimH by molecular dynamics and steered molecular dynamics. While the crystal structure of only one FimH conformation has been reported so far, we describe two distinctively different conformations of the mannose-bound FimH binding site. Force-induced dissociation was slowed when the mannose ring rotated such that additional force-bearing hydrogen bonds formed with the base of the FimH binding pocket. The lifetime of the complex was further enhanced significantly by rigidifying this base. We finally show how even sub-angstrom spatial alterations of the hydrogen bonding pattern within the base can lead to significantly decreased bond lifetimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A structure-based sliding-rebinding mechanism for catch bonds.

Catch bonds, whose lifetimes are prolonged by force, have been observed in selectin-ligand interactions and other systems. Several biophysical models have been proposed to explain this counterintuitive phenomenon, but none was based on the structure of the interacting molecules and the noncovalent interactions at the binding interface. Here we used molecular dynamics simulations to study change...

متن کامل

Modeling and interactions analysis of the novel antagonist agent flibanserin with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor as a HSDD treatment in premenopausal women

Flibanserin is a novel antagonist small molecule to treat the hypoactive sexual desire disorder (HSDD) in the premenopausal women. The present article is related to the structural and electronic properties study and docking analysis of the title compound with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor. To access these aims, the molecular structure of the said compound was optimized usin...

متن کامل

Structural Basis of the Induced-Fit Mechanism of 1,4-Dihydroxy-2-Naphthoyl Coenzyme A Synthase from the Crotonase Fold Superfamily

1, 4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase fold enzyme with an implicated role of conformational changes in catalysis. We have identified these conformational changes by determining the structures of its Escherichia coli and Synechocystis sp. PCC6803 orthologues in complex with a product analog. The structural changes include the folding of an active-site l...

متن کامل

Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes.

Mechanical forces acting on cell adhesion receptor proteins regulate a range of cellular functions by formation and rupture of noncovalent interactions with ligands. Typically, force decreases the lifetimes of intact complexes ("slip bonds"), making the discovery that these lifetimes can also be prolonged ("catch bonds") a surprise. We created a microscopic analytic theory by incorporating the ...

متن کامل

Force Modulating Dynamic Disorder: Physical Theory of Catch-slip bond Transitions in Receptor-Ligand Forced Dissociation Experiments

Recently experiments showed that some adhesive receptor-ligand complexes increase their lifetimes when they are stretched by mechanical force, while the force increase beyond some thresholds their lifetimes decrease. Several specific chemical kinetic models have been developed to explain the intriguing transitions from the “catch-bonds” to the “slip-bonds”. In this work we suggest that the coun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 16 7  شماره 

صفحات  -

تاریخ انتشار 2008